师资队伍

刘汉兵

发布人:发表时间:2017-05-09点击:

刘汉兵

Hanbing Liu

中国地质大学(武汉)y12345永利主页

School of Mathematics and Physics,

China University of Geosciences (Wuhan),

Wuhan, Hubei 430074


办公室 Office东区综合教学楼A1415

A1415, Integrated Teaching building, East Campus

Email: hanbing272003@aliyun.com

研究方向 Research Interests

分布参数系统的控制理论,特别是最优控制和能稳性。

Control theory of parameter distributed systems, especially about the optimal control theory and stabilizability.

教育经历 Education

2009. 102012. 07,罗马尼亚“Al.I.Cuza University, 最优控制,博士;

Ph.D. of Mathematics, "Alexandru Ioan Cuza" University in Iasi


2007. 092009. 07,武汉大学,数学与统计学院应用数学专业,硕士;

M. S., School of Mathematics and Statistics, Wuhan University


2003. 092007. 07,华中师范大学,数学与统计学学院应用数学专业,本科。

B. S., School of Mathematics and Statistics, Huazhong Normal University

工作经历 Academic Experience

2016. 01- ,中国地质大学(武汉),副教授;

Associate professor, China University of Geosciences (Wuhan)


2013. 01 -2015. 12,中国地质大学(武汉),讲师;

Lecture, China University of Geosciences (Wuhan)


2012. 07-2012. 12,中国地质大学(武汉),助教;

Assistant professor, China University of Geosciences (Wuhan)

学术兼职 Academic Service

[1] 美国数学会《Mathematical Reviews(数学评论)》评论员

Reviewer of Mathematical Reviews (American Mathematical Society)


[2] SCI期刊《SIAM Journal on Control and Optimization》、《ESAIM: COCV》、《Mathematical Control and Related Fields》、《Journal of the Franklin Institute》等期刊审稿人。

Reviewer of journals above.

科研课题 Funded Research Projects

[1] 国家自然科学基金青年基金项目(National Natural Science Foundation of China): “具有状态约束的Navier-Stokes方程的最优控制问题”(Optimal control problems of Navier-Stokes equations with state constraints)(主持,2015-2017

[2] 中央高校杰出人才培育基金(the Fundamental Research Funds for the Central Universities): “带有约束的流体方程的最优控制问题” (Optimal control of fluid flows with constraints)(主持, 2014-2015

[3] 教育部科技项目博士点基金“带有领导者的多主体系统的一致性优化研究”(参加,序2201301451200052013-2016

[4] 国家自然科学基金青年基金项目“部分耗散KdV方程的动力学行为与定量唯一延拓性”(参加,序2117015352017-2020

科研论文 Publications

[1] Lu, Weiping; Liu Hanbing*, Sampled-data time optimal control for heat equation with potential in R^n.  Acta Math. Sci. Ser. A, Accepted.

[2] Liu, Hanbing; Wang, Gengsheng; Xu, Yashan; Yu, Huaiqiang, Characterizations of complete stabilizability. SIAM J. Control Optim.  60 (2022), no. 4, 2040–2069.

[3] Wang, Xiangyu; Liu, Hanbing*, The Maximization of the admissible sampling interval of boundary proportional sampled-data feedbacks for stabilizing parabolic equation. J. of Math (PRC), Vol. 42 ( 2022 ) No. 3.

[4] Liu, Hanbing*; Wang, Gengsheng, Second order optimality conditions for periodic optimal control problems governed by semilinear parabolic differential equations. ESAIM Control Optim. Calc. Var. 27 (2021), Paper No. 24, 27 pp.

[5] Liu, Hanbing LuoWenqiang LiShaohua, Time-periodic Fitzhugh-Nagumo equation and the optimal control problems, Chinese Annals of Mathematics, Series B,   42 (2021), no. 3, 471–486.

[6] Han, Shuo; Liu, Hanbing; Lin, Ping, Null controllability and global blowup controllability of ordinary differential equations with feedback controls. J. Math. Anal. Appl. 493 (2021), no. 1, 124510, 33 pp.

[7] Liu, Hanbing*; Hu, Peng, Boundary sampled-data feedback stabilization for  parabolic equations. Systems Control Lett. 136 (2020), 104618, 8 pp.

[8] Lin, Ping; Liu, Hanbing*; Wang, Gengsheng, Output feedback stabilization for heat equations with sampled-data controls. J. Differential Equations 268 (2020), no. 10, 5823–5854.

[9] Liu, Hanbing*, Xiao, Haijun, Boundary feedback stabilization of Boussinesq equations. Acta Math. Sci. Ser. B (Engl. Ed.) 38 (2018), no. 6, 1881–1902.

[109] Liu Hanbing, Impulse output feedback stabilization of Fisher’s equation. Systems & Control Letters, 2017, 107:17–21.

[11] Liu, Hanbing*; Zhang, Can, Observability from measurable sets for a parabolic equation involving the Grushin operator and applications. Math. Methods Appl. Sci. 40 (2017), no. 10, 3821–3832.

[12] Liu, Hanbing*; Hu, Peng; Munteanu, Ionuţ, Boundary feedback stabilization of Fisher's equation. Systems Control Lett. 97 (2016), 55–60.

[13] Liu, Hanbing, Boundary optimal feedback controller for time-periodic Stokes-Oseen flows. NoDEA Nonlinear Differential Equations Appl. 21 (2014), no. 5, 709–735.

[14] Liu, Hanbing*; Yang, Juan Optimal control of semilinear parabolic systems with state constraint. J. Math. Anal. Appl. 417 (2014), no. 2, 787–803.

[15] Yang, Juan; Liu, Hanbing*, An approximation scheme of stochastic Stokes equations. Electron. Commun. Probab. 18 (2013), no. 21, 10 pp.

[16] Liu, Hanbing, Optimal control of fluid dynamic systems with state constraint of pointwise type. Nonlinear Anal. 93 (2013), 97–108.

[17] Liu, Hanbing, Boundary optimal control of time-periodic Stokes-Oseen flows. J. Optim. Theory Appl. 154 (2012), no. 3, 1015–1035.

[18] Liu, Hanbing, Optimal control problems with state constraint governed by magnetohydrodynamic equations. Numer. Funct. Anal. Optim. 32 (2011), no. 4, 409–435.

[19] Liu, Hanbing, Optimal control problems with state constraint governed by Navier-Stokes equations. Nonlinear Anal. 73 (2010), no. 12, 3924–3939.

教授课程 Teaching

《控制论(Control Theory)》 《数学物理方程( Mathematical physics equations)》

《高等数学(Advanced Mathematics)》 《线性代数(Linear Algebra)》

奖励与荣誉 Honors and Awards

2016年,论文“Liu, Hanbing*; Yang, Juan, Optimal control of semilinear parabolic systems with state constraintJ. Math. Anal. Appl. 417 (2014), no. 2, 787–803.获第十六届湖北省自然科学优秀学术论文奖

2015年,指导学生田文浩,王杨,姚悦,获得美国大学生数学建模竞赛一等奖;

2019年,获中国地质大学(武汉)第十一届青年教师教学竞赛一等奖;

两次入选地大学者青年优秀人才。




Baidu
sogou