报告题目 |
Megastability: definition and its relation with multistability, extreme mutlistability, and hidden attractors |
报告时间 |
2019年10月19日(周六)8:30—10:00 |
报告地点 |
东区教学科研综合楼,A座1404 |
报告人 |
Sajad Jafari博士(Amirkabir University of technology) |
报告人 简介 |
Sajad Jafari,博士,助理教授,阿米卡比尔理工大学(Amirkabir University of Technology)(伊朗排名第3高校)生物医学工程系,2013年毕业于阿米卡比尔理工大学,研究方向为混沌、混沌系统、非线性动力学、系统最优设计。发表学术论文207篇,谷歌学术总引用5000多次、H-index 36、i10因子108,单篇最高引用314次,前1%科睿唯安高被引学者。担任《International Journal of Bifurcation and Chaos》、《AEU-International Journal of Electronics and Communications》等期刊的副主编,以及《Complexity》、《European Physical Journal-Special Topics》等期刊特刊的客座主编;同时,担任《IEEE Transactions on Circuits and Systems》、《Communications in Nonlinear Science and Numerical Simulation》、《Chaos》、《Chaos Solitons & Fractals》、《Nonlinear Dynamics》、《Physics Letters A》等四十多个国际著名期刊的论文评审专家。 |
报告摘要 |
Multistability is one of the most important phenomena in dynamical systems. It occurs in many areas of science including physics, chemistry, biology, economics, and nature. The attracting state of a multistable system depends on the initial conditions. Multistability can be undesirable, for example, in the design of a commercial device with specific characteristics where it must be avoided to stabilize the desired state in a noisy environment. On the other hand, multistability allows flexibility in the system performance without changing parameters, and that can be used with the right control strategies to induce a switching between different coexisting states. Sometimes infinite attractors coexist in a dynamical system. When those infinite attractors are uncountable, the situation is called extreme multistability. However when those infinite attractors are countable, the situation is called megastability. In this talk we investigate recent examples of megastable systems. We show that in the latter case, certainly infinite hidden attractors exist. |
邀请人 |
魏周超教授2019年10月15日 |