“数理论坛”第93期:1.Quantitative unique continuation for the heat equation 2.Weighted L^2-Estimates Of Solutions For Damped Wave Equations With Variable Coefficients
发布人:毕洁发表时间:2019-05-28点击:次
数理论坛第93期
报告题目
1.Quantitative unique continuation for the heat equation
2.Weighted L^2-Estimates Of Solutions For Damped Wave Equations With Variable Coefficients
报告时间
2019年5月30日(周四)上午8:30—10:30
报告地点
东区综合楼A座1404室
报告人
张灿 博士后
张志飞 教授
报告人
简介
张灿,武汉大学博士毕业,先后在巴黎六大和西班牙巴斯克大学做博士后研究工作。现供职于武汉大学数学与统计学院。近五年在Journal of the european mathematical society,Journal de mathematiquespures et appliquees等知名期刊发表论文10余篇,主持国家自然科学青年基金一项。
1.This talk is to introduce some interpolation inequalities (also known as quantitative propagation of smallness) at one single time point of solutions to parabolic PDEs, by using a profound result in a recent work by Logunov-Malinnikova.
2.The authors establish weighted -estimates of solutions for the damped wave equations with variable coefficientsutt−divA(x)∇u+a(x)ut = 0 in Rn under some assumptionson the damping a(x). The authors show that these weighted -estimates are closely related to the geometrical properties of the metric determined by A(x). Some examples are given about applications of those estimates in obtaining stabilization properties of wave equations.