“数理论坛”第75期:Nonlinear Stability of Rarefaction Wavesfor the Compressible Navier-Stokes Equations with Zero Heat Conductivity
发布人:毕洁发表时间:2018-12-21点击:次
“数理论坛”第75期
报告题目
Nonlinear Stability of Rarefaction Wavesfor the Compressible Navier-Stokes Equations with Zero Heat Conductivity
报告时间
2018年12月24日(周一)15:40-16:20
报告地点
东区综合楼A1404
报告人
尹慧 副教授
报告人
简介
尹慧,华中科技大学数学与统计学院,副教授。2008年获中国科学院武汉物理与数学研究所博士学位,师从赵会江教授。主要从事非线性双曲型守恒律及其相关问题解的性态研究,在《Journal of Differential Equations》、《Communications on Pure and Applied Analysis》以及《Kinetic and Related Models》等SCI期刊上发表学术论文13篇。2009年,获批国家自然科学基金青年科学基金项目。2011-2012年,作为国家公派留学人员赴美国University of Iowa访问一年。
报告摘要
This talk is concerned with the time-asymptotic nonlinear stability of rarefaction waves to the Cauchy problem of the one-dimensional compressible Navier-Stokes equations with zero heat conductivity. Under the assumption that the unique global entropy solution to the resulting Riemann problem of the corresponding compressible Euler equations consists of rarefaction waves only, then if both the initial perturbation and the strengths of rarefaction waves are assumed to be suitably small, we show that its Cauchy problem admits a unique global solution which tends time-asymptotically toward the rarefaction waves.