“数理论坛”第74期 |
|
报告题目 |
Asymptotic stability of a composite wave of two viscous shock waves for the one-dimensional radiative Euler equations |
报告时间 |
2018年12月24日(周一)15:00-15:40 |
报告地点 |
东区综合楼A1404 |
报告人 |
范丽丽 副教授 |
报告人 简介 |
范丽丽,武汉轻工大学副教授,毕业于武汉大学数学与统计学院,理学博士.主要致力于带耗散项的流体动力学方程组, 尤其是近年来受到国内外同行所广泛关注的流体动力学方程初边值问题的整体非线性稳定性, 以及相应的初边值问题的稳定性和收敛率的研究工作. |
报告摘要 |
The radiative Euler equations are a fundamental system to describe the motion of the compressible gas with radiation heat transfer phenomena. This report is devoted to the study of the wellposedness of the radiative Euler equations. By employing the anti-derivative method, we will show the unique global-in-time existence and the asymptotic stability of the solutions of the radiative Euler equations for the composite wave of two viscous shock waves with small strength. This method developed here is also helpful to other related problems with similar analytical difficulties. |
邀请人 |
万灵 特任副教授 |